Adaptation is mandatory for intensity modulated proton therapy of advanced lung cancer to ensure target coverage.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Large anatomical changes during radiotherapy are seen for a large proportion of lung cancer patients. We investigate the applicability of a decision support protocol for photon therapy in a proton therapy setting. MATERIAL AND METHODS Twenty-three consecutive NSCLC patients treated with adaptive photon therapy were retrospectively planned using IMPT. The adaptive protocol was based on geometrical measures of target positioning and large anatomical changes as shown on daily CBCT scans. Two surveillance CT-scans were acquired during the treatment course. The consequences of anatomical changes were evaluated by recalculating the proton plans on the surveillance scans. The CTV receiving 95% of the prescribed dose was analysed. RESULTS Fourteen (61%) patients needed adaptations when treated with protons, given that 95% of the CTV must be covered by 95% of the dose. In comparison, no patients needed adaptation when treated with photons using this criterion. The adaptive protocol was found to identify patients with large target under-dosage for proton therapy (six patients). Additionally, target under-dosage was observed for eight patients with non-rigid changes up to 15mm in the positioning of the bones. CONCLUSIONS Proton therapy for loco-regional lung cancer demands daily imaging and therapy adaptation for a high proportion of patients.
منابع مشابه
Intensity modulated radiation therapy (IMRT) technique for left breast cancer by different numbers of beam fields
Background: Intensity Modulated Radiotherapy (IMRT) can improve radiotherapy (RT) results by improving healthy tissue sparing. Additionally, IMRT provides more consistent dose deliveries and suppresses secondary tumor formation. RT is a principal treatment in breast cancer (BC). Aim: To evaluate the outcome of the Radiotherapy Plans (RTP) that use IMRT technique to left breast and other organs,...
متن کاملEvaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code
Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...
متن کاملThe evaluation of lung doses for radiation pneumonia risk in stereotactic body radiotherapy: A comparison of intensity modulated radiotherapy, intensity modulated arc therapy, cyberknife and helical tomotherapy
Background: Radiation Pneumonia (RP) is one of the most extensive side effects in Stereotactic Body Radiotherapy (SBRT) of lung cancer. SBRT are performed by means of Intensity Modulated Radiotherapy (IMRT), Intensity Modulated Arc Therapy (IMAT), CyberKnife (CK) or Helical Tomotherapy (HT) treatment methods. In this study, we performed a plan study to determine the plan parameter such as the M...
متن کامل3D-Conformal Radiation Therapy and Intensity-Modulated Radiation Therapy Techniques for Laryngeal Cancer Taking Parotid Glands as Organ at Risk
Background: Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) techniques are used for the treatment of patients with laryngeal cancer. Objective: This study aimed to investigate the effects of these 2 treatment techniques on the planning target volume (PTV) (laryngeal cancer), dose homogeneity, dose of organs at...
متن کاملAssessment and Comparison of Homogeneity and Conformity Indexes in Step-and-Shoot, Compensator-Based Intensity Modulated Radiation Therapy (IMRT) and Three-Dimensional Conformal Radiation Therapy (3D CRT) in Prostate Cancer
Introduction: Intensity modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D CRT) are two treatment modalities in prostate cancer, which provide acceptable dose distribution in tumor region with sparing the surrounding normal tissues. IMRT is based on inverse planning optimization; in which, intensity of beams is modified by using multileaf c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
دوره 122 3 شماره
صفحات -
تاریخ انتشار 2017